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ABSTRACT
This paper introduces a method for the flexible model-based
segmentation of the whole heart from 3D CT images. The
novelty of the approach is the combination in a single frame-
work of two types of deformable models. The anatomical
structures with well defined shapes (like the cardiac cham-
bers) are segmented with deformable models constraining
the deforming surface to stay close to some shape prior. On
the other hand, structures with highly variable shapes are
extracted by locally inflating the deforming surface without
strong assumptions on the shape of the object to segment.

The proposed method has been applied to the segmen-
tation of the heart of 17 patients. Cardiac chambers and
major vessels were segmented using shape-constrained de-
formable models while the left atrial appendage (LAA) was
extracted using the mesh inflation. Qualitatively, the mesh
resulting from the inflation adapts well to the difficult shape
of the LAA. However, reaching the very tip of this elongated
structure remains difficult. These results are numerically
confirmed with manually generated reference segmentations.

Index Terms— model-based segmentation, deforming
surface, mesh inflation, cardiac model, left atrial appendage

1. INTRODUCTION

The accurate segmentation of the heart, i.e., the process of as-
signing labels to regions in the image, is an important process
in the diagnosis of cardiovascular diseases. Even if the seg-
mentation could be done manually, it is practically impossible
in daily clinical routine and much efforts have been spent on
the development of semi- or fully automatic approaches.

In particular, deformable models have been widely used
in the processing of cardiac images [1]. For the purpose of
the chamber segmentation, shape priors showed to be useful
to constraint the model deformation. A high degree of autom-
atization could be achieved with application to computed to-
mography (CT) (see e.g. [2, 3]) or magnetic resonance imag-
ing (MRI) (see e.g. [4, 5]). However, the constraints imposed
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by the shape prior may be too strong for substructures with
highly variable shape like the left atrial appendage (LAA),
which is the target structure of this work.

The LAA is a substructure of the heart above the left ven-
tricle and connected to the left atrium (LA). It has an highly
variable shape, often tubular, hooked and with a few lobes. Its
size varies from 1 to 19 cm3 [6]. It has some notable functions
including the regulation of the heart function, and is involved
in various heart diseases like thrombosis building, cardiac fib-
rillation, etc. [7].
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Fig. 1. Position of the LAA in the heart. Here, only the base
of the LAA is highlighted, in red.

The method presented in this article builds upon a multi-
step framework for the automatic segmentation of the whole
heart and the major vessels in CT images introduced in [2].
Once the multi-compartment heart model is adapted to the
patient’s anatomy, a high resolution surface at the interface
between the LA and the LAA is inflated into the LAA under
the action of region forces without making explicit assump-
tions on the shape of the object being segmented. The nov-
elty of the approach is that both the shape-constrained and
the inflation deformable models are integrated into a single
framework.

This paper is structured as follows. Section 2 briefly out-
lines the existing framework for whole heart segmentation [2]
for completeness (first four components in Fig. 2). The new
inflation algorithm (last component in Fig. 2) is described in
Section 3 and evaluated in Section 4.
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Fig. 2. Chain of modules combining the shape-constrained
and inflation deformable models for heart segmentation.

2. HEART SEGMENTATION WITH
SHAPE-CONSTRAINED DEFORMABLE MODELS

Automatic whole heart segmentation of the chambers is
achieved in several phases which are briefly summarized
below. More details can be found in [2].

Heart Detection – In the first phase, a modified General-
ized Hough Transform is used to roughly localize the heart in
the images and adapt the size of the model [2].

Parametric Adaptation – The second and the third phase
adapt the model to the image by optimizing the parameters of
a parametric transformation. In phase 2 pose misalignment
is compensated by a similarity transformation, while in phase
3 a multi-affine transformation T [.] is optimized where each
of the anatomical regions (left and right ventricles, left and
right atria, and trunk of the great arteries) is assigned an affine
transformation.

Practically, this adaptation is performed iterating two
steps until the mesh reaches some steady state. In the first
step, candidate points are detected in the image maximizing
a boundary detection function, which is evaluated for each
triangle along its normal vector. The point with the highest
response is kept as the target point xtarget

i .
In the second step, the parametric transformations are op-

timized by minimizing an external energy. In this energy, the
triangle centers are attracted towards target points. This target
point can move without penality on the tangent plane of the
surface.

Deformable Adaptation – In the fourth phase, each ver-
tex vi is allowed to move freely and the mesh adaptation is
performed minimizing an energy function made of two contri-
butions. The external energy introduced above is still used to
attract the model towards the image boundaries while the ver-
tex displacements are constrained by an internal energy which
penalizes deviations of the deforming model from the refer-
ence shape

E = α · Eexternal + Einternal, (1)

with α a weighting factor, and

Einternal =
V∑

i=1

∑
j∈N(i)

((vi− vj)− (T [mi]−T [mj ]))2, (2)

with N(i) the set of indices of the neighbor vertices of ver-
tex vi, and mi the vertex coordinates of the reference model
undergoing the multi-affine transformation T [.].

As in the previous section, mesh adaptation is performed
by iterating the boundary detection step and the minimization
of the Eq. (1) until a steady is state is reached.

3. LEFT ATRIAL APPENDAGE SEGMENTATION
WITH INFLATION DEFORMABLE MODEL

After the model is adapted using the method described in the
previous section, the position of the LA–LAA interface is
known, and the surrounding substructures (LA, left ventric-
ular myocardium, aorta, etc.) are already segmented. These
two properties can be efficiently used to subsequently grow
the mesh surface into the LAA.

For that purpose, the mesh at the LA–LAA interface is
triangulated with high resolution to ensure reasonable trian-
gle size when the mesh is inflated. As for the chamber seg-
mentation, the surface is deformed by minimizing an energy
function (1) where the external energy inflates the mesh and
the internal energy imposes geometric regularity constraints.

3.1. Region-Based External Energy

We call the inflation external energy region-based energy
since it makes use of the voxel gray values (Houndsfield
Units) as compared to external energy from [2] which uses
image edges. This region-based external energy has two com-
ponents. First, it has to decide whether the mesh has to inflate
or to shrink. Here, we compare the local gray value at the
triangle center with a threshold differentiating between blood
pool and background. Then, a target point is determined
inside or outside depending on the previous comparison.

Threshold Computation – The threshold between blood
pool and background is computed once before inflation and
determined using the results of the previous segmentation. To
find this threshold, we compute the histograms of two tissue
classes from the already segmented image: the LA and the
myocardium. The LAA is rather bright and has almost the
same gray value as the LA, while the background is as bright
as or darker than the myocardium. The optimal threshold be-
tween these two classes can be then computed by minimizing
the overall voxel classification error.

Region-Based Target Point – Then, a target point xtarget
i

is computed for each triangle center ci along its normal vector
ni. This target point depends on the gray value at the location
of the triangle center. If this gray value is

1. above the threshold, ci is supposed inside the LAA, and
xtarget

i is set along the normal ni pointing outside;

2. under the threshold, ci is supposed outside the LAA,
and xtarget

i is set along the normal ni pointing inside;



3. almost equal to the threshold, ci is supposed on the
boundary, and xtarget

i is set at the same place as ci.

In the first two cases, xtarget
i is successively set at a distance

of 1, then 2, and finally 3 mm from ci, if at each of these
positions, the point does not belong to an already segmented
structure and is not on the other side of the threshold.

Region-Based External Energy – The region-based ex-
ternal energy can then be expressed as follows:

Eexternal, region-based =
T∑

i=1

(
ni · (xtarget

i − ci)
)2

(3)

3.2. Mesh Reference Internal Energy

The internal energy used to preserve a regular triangle distri-
bution during inflation is the same as in Eq. (2) but instead
of comparing the deforming mesh to a fixed reference shape,
we use the deforming mesh at the previous iteration as refer-
ence. We can thus preserve some regular triangle distribution
without making any specific assumption on the shape to be
segmented.

3.3. Loop Repair During Growing

During inflation, some loops may appear. We consequently
use an algorithm to detect self-intersections as introduced
in [8]. It selects the triangle neighbors until the N-th order
of the intersecting triangles and repairs the deformed surface
by smoothing it. Further iterations of the mesh adaptation are
allowed only if the number of intersection after repairing is
small enough.

Smoothing is implemented by relaxing the mesh within
the selected neighborhood by applying the Mesh Reference
Internal Energy above without external energy contribution.
We experimentally observed that neighborhoods including
triangles up to the third order were sufficient. The inflation
is stopped if more than ten intersecting triangles cannot be
repaired.

4. RESULTS

The algorithm takes about 50 seconds, with about 20 seconds
for the LAA segmentation, on a Intel Xeon at 2,4 Ghz with
3 GB of RAM. Fig. 3 shows an example of inflation into the
LAA.

In the proposed method, the weight α between the inter-
nal and external energies is successively set to 0.2, 1, 2 and
5, with each time five iterations and one loop repair. The ex-
ternal energy becomes thus stronger to help the mesh reach
the far boundaries of the LAA. These parameters have been
heuristically selected during our experiments.

A manual segmentation has been made by hand: on each
3D pictures, the four first phases of segmentation were per-
formed. Then a operator was segmenting the LAA with a

(a) Before growing (b) α = 0.2

(c) α = 1 (d) α = 2

Fig. 3. Example of inflation. First picture: axial slice, from
feet to head, with the substructures contours: LAA (dark
green), LA (bright green), myocardium (yellow). Second pic-
ture: front view of the 3D mesh.

brush layer by layer. The segmentation was beginning from
the base of the LAA until the borders characterized by a fixed
gray value (value potentially different between different pic-
tures). Then this LAA segmentation was slightly smoothed.

Numerical results computed by comparing manually seg-
mented voxels (ground truth) and algorithm-segmented vox-
els for 17 patients are presented Fig. 4. The blue bar is the
Sensitivity. It represents the percentage of voxels belonging
to the LAA which have been segmented by the algorithm. The
red bar is the Positive Predictive Value (PPV). It represents the
percentage of voxels segmented by the algorithm which truly
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Fig. 4. Numerical evaluation of the LAA segmentation for 17
patients. The first bar in blue is the sensitivity and the second
bar in red the positive prediction value.

belong to the LAA. These quantities can be calculated with
the following formulas:

Sensitivity =
TP

TP + FN
; PPV =

TP
TP + FP

(4)

with TP: True Positive, FP: False Positive, FN: False Negative
We experimentally found that the mesh has some difficul-

ties to reach the tip of the LAA, as illustrated by the some-
times low sensitivity shown on Fig. 4 ; but there are very few
segmentation errors, with a good adaptation to the shape of
the LAA, as described by the high PPV.

We can observe one major failure with both low sensi-
tivity and PPV (subject 14), and three subjects (2,3,4) with
a sensitivity smaller than 60 %. These problems are mainly
due to small inaccuracies during the four first segmentation
phases occurring near the base of the LAA. The manual seg-
mentation has been able to uphold this problem - apart from
the voxels in the base of the LAA - but the automatic seg-
mentation has inflated the mesh in wrong directions, from the
beginning. The loop reparation couldn’t make the mesh to
go in the correct direction, and nearly stopped the algorithm:
we preferred to have a small, not very inflated mesh near the
base than a twisted mesh anywhere. This undersegmentation
of the LAA must be known if this algorithm is used in clini-
cal application. It has been chosen as a compromise between
sensitivity and reliability.

5. CONCLUSION

We presented a method combining two types of deformable
models integrated in a common framework. This approach
enables the segmentation of structures with well defined
shapes using shape-constrained deformable models while
also enabling the flexible inflation of a high resolution mesh
into structures with less predictable shapes. We applied this
framework to the segmentation of the left atrial appendage.
This combination of deformable models could be applied to
other complex anatomical structures.
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